Pump Application Reference Guide

The Pump Application Data Sheet can be conveniently used to transmit the required information to our Application Specialists to help them assist making a proper Pump Selection.

The first step in selecting a Pump is to determine the Frame size required for your application. The Table below relates capacity and pressure required to the three Frames available. Frame size is also determined by how other variables (Viscosity, Abrasiveness) affect Horsepower requirements. The "CL" frame is the standard bearing-drive designation. The "CM" frame utilizes the bearing drive unit from the next larger pump size. Select the Frame size which will most appropriately meet your needs.

PUMP FRAME	APPROXIMATE GPM RANGE	APPROXIMATE MAX. PRESSURE	SIZE PUMPING ELEMENTS AVAILABLE
CL	.9-500	225 psi	2, 3, 4, 6, 8 10, 10H, 12, 12H,
СМ	.05-24	450 psi	1, 2, 3, 4
CG	5-350	150 psi	8, 10, 10H, 12, 12H,

Frame Selection

If particles in suspension are to be pumped, determine the Pump Frame Size that will handle the maximum dimension of the particle. Refer to Table No. 1.

		Pump	TABLI Frame Siz	E No. 1 ze - Parti	cle Size			
PUMP FRAME SIZE	2CMI 6CM1	1CL2 2CL2 3CL2 6CM2	1CL3 2CL3 3CL3 6CM3	1CL4 2CL4 3CL4 6CM4	1CL6 2CL6 3CL6	1CL8 2CL8 3CL8	1CL10 2CL10 3CL10 1CL10 2CL10	1CL12 2CL12 3CL12 1CL12 2CL12
Max. Particle Size	.08"	.15″	.20″	.30″	.40"	.60″	.80″	1.0"

The size of the Rotor and Stator Pumping Elements required to deliver the required capacity at the viscosity of the fluid are set forth in Table No. 2. Select Elements large enough to deliver more than the required capacity when operating at the maximum speed shown.

Table No. 2 is based on viscosities for one fluid and will not be correct for slurries or emulsions where each of which have different viscosities. The recommended pumping speed for a mixture of fluids having different viscosities should be an approximate average of the several fluids.

TABLE NO. 2										
Pump Frame Size - Viscosity - Pumping Elements Size										
The second s		Viscosity (Centipoises)							A.F. Sale	
Pump Frame Size	Size Pumping Element		1 to 1000	1000 to 2500	2500 to 5000	5000 to 10,000	10,000 to 50,000	50,000 to 100,000	100,000 to 150,000	
2CM1, 6CM1 1		MAX. RPM	1200	900	450	250	125	40	20	
	1	MAX. GPM	0.58	0.50	0.25	0.14	0.07	0.02	0.01	
1012 2012 3012		MAX. RPM	1200	900	450	250	125	40	20	
6CM2	2	MAX. GPM	3.0	2.4	1.2	0.7	0.35	0.1	0.05	
1CL3, 2CL3, 3CL3	2	MAX. RPM	1200	900	450	250	125	40	20	
6CM3	3	MAX. GPM	10.0	7.8	3.9	2.2	1.1	0.35	0.17	
1CL4, 2CL4, 3CL4	1	MAX. RPM	1200	900	450	250	125	40	20	
6CM4	M4 4	MAX. GPM	24.0	18.0	9.0	5.0	2.5	0.8	0.4	
1016 2016 2016	6	MAX. RPM	900	900	450	250	125	40	20	
1020, 2020, 3020	0	MAX. GPM	47.0	47.0	23.5	13.0	6.5	2.0	1.0	
1019 2019 2019	8	MAX. RPM	900	900	450	250	125	40	20	
1010, 2010, 3010	0	MAX. GPM	100	100	53.0	29.0	14.5	4.7	2.3	
1CL10, 3CL10,	10	MAX. RPM	750	750	450	250	125	40	20	
3CL10	10	MAX. GPM	140	140	85.0	47.0	24.0	7.5	3.8	
1CI 10H 2CI 10H	10H	MAX. RPM	750	750	450	250	125	40	20	
	1011	MAX. GPM	210	210	125	70.0	35.0	11.0	5.5	
1CL12, 2CL12,	12	MAX. RPM	600	600	450	250	125	40	20	
3CL12		MAX. GPM	261	261	196	109	54.4	17.4	8.7	
1CI 12H 2CI 12H	12H	MAX. RPM	600	600	450	250	125	40	20	
1021211, 2021211		MAX. GPM	391	391	293	163	81.5	26	13	
					R. Law					

If the fluid has Abrasive characteristics, refer to Table No. 3 for the proper operating speed of the Pump. When the speed selected from Table No. 3 results in a lower capacity than required then change the selection of the size Pump even though it will operate below the maximum recommended speed. Keep in mind that the speed requirements for Viscosity in Table No. 2 must also be considered and in general where there is a difference; select the lower of the speeds.

TABLE NO. 3 Pump Frame Size - Abrasives - Pump Elements Size									
Pump Frame Size	Size Pumping Elements	-	None	Abrasive Cl Light	haracteristic Medium	s Heavy			
2CM1, 6CM1	1	MAX. RPM	1200	900	600	300			
1CL2, 2CL2, 3CL3, 6CM2	2	MAX. GPM MAX. RPM	0.58	0.50 900	0.34	0.17			
1CL3, 2CL3, 3CL3, 6CM3	3	MAX. GPM MAX. RPM	3.0 1200	2.4 900	600	300			
1CL4, 2CL4, 3CL4, 6CM4	4	MAX. GPM MAX. RPM MAX. GPM	10.0 1200 24.0	7.8 900 18.0	5.2 600 12.0	300			
1CL6, 2CL6, 3CL6	6	MAX. RPM MAX. GPM	900 47.0	675 35.5	450 23.5	225			
1CL8, 2CL8, 3CL8	8	MAX. RPM MAX. GPM	900 100	675 70.0	450 52.5	225 26.5			
1CL10, 2CL10, 3CL10	10	MAX. RPM MAX. GPM	750 140	565 106	375 70.0	190 36.0			
1CL10H, 2CL10H	10H	MAX. RPM MAX. GPM	750 210	565 156	375 105	190 52.5			
1CL12, 2CL12, 3CL12	12	MAX. RPM MAX. GPM	600 261	450 196	300 130	150 65			
1CL12H, 2CL12H	12H	MAX. RPM MAX. GPM	600 391	450 293	300 195	150 97.5			
						1			

The length of the Rotor and Stator Elements are designated by Stages, even though both Elements are each integral components. The approximate Pressure Per Stage (PSI) where the fluid pumped has no Abrasives or is laden with Light, Medium or Heavy Abrasives is shown in Table No. 4.

Pum	np Frame Size - Pr	TABLE NO. 4 ressure Per Stage of	Rotor/Stator Element	IS				
Pump Frame Size	Approximate Pressure Per Stage (PSI) Abrasive Characteristics							
	No	Light	Medium	Heavy				
1 and 2	60	40	25	10				
0.11	75	60	25	15				

Referring to Table No. 4, if the fluid has no Abrasives and the Pump Frame Size is 2, the Pressure Per Stage for a 1CL2 is 60 PSI; If it is a 2CL2 the total pressure would be 120 PSI. Further, if the Abrasive is Light the total pressure for a 2CL2 would be 80 PSI and if the Abrasive is heavy the total pressure for the 2CL2 would be 20 PSI.

Having generally selected the pump Frame Size and the number of Stages of the Rotor/Stator Elements, refer to the Performance Data for the Initial Horsepower required to drive the Pump handling fluid with relatively no Viscosity (1 to 2500 Centipoises). For fluids containing increasing amounts of Abrasives the horsepower needed will be greater, refer to Table No. 5 for this additional amount. Multiply the HP increase/ 100 RPM/ Stage by the Pump speed in hundreds of RPM and then by the number of Pump Stages. Add this amount to the initial Horsepower to determine the Final Horsepower required.

TABLE NO. 5 Pump Frame Size - Horsepower Increase - Viscosity										
Pump Frame Size		HP Additives/100 R.P.M./Stage Viscosity (Centipoises)								
	Size Pumping Elements	1 to 2500	2500 to 5000	5000 to 10,000	10,000 to 50,000	50,000 to 100,000	100,000 to 150,000	150,000 to 200,000		
2CM2, 6CM1	1	0	0.002	0.0025	0.003	0.007	0.010	0.012		
1CL2, 2CL2, 3CL2, 6CM2	2	0	0.01	0.015	0.016	0.032	0.046	0.056		
1CL3, 2CL3, 3CL3, 6CM3	3	0	00.03	0.04	0.05	0.11	0.15	0.19		
1CL4, 2CL4, 3CL4, 6CM4	4	0	0.06	0.09	0.12	0.25	0.35	0.44		
1CLc, 2CL6, 3CL6	6	0	0.17	0.23	0.31	0.64	0.91	1.12		
1CL8, 2CL8, 3CL8	8	0	0.37	0.52	0.71	1.43	2.05	2.52		
1CL10, 2CL10, 3CL210	10	0	0.60	0,83	1.13	2.30	3.29	4.06		
1CL10H, 2CL10H	10H	0	0.88	1.22	1.67	3.39	4.83	5.97		
1CL12, 2CL12, 3CL12	12	0	1.4	2.0	2.7	5.3	7.7	9.0		
1CL12H, 3CL12H	12H	0	2.1	2.9	4.0	8.0	11.3	13.2		
	1.1.1.1.1.1.1.1		12/11/1	The state		1 State	X			